1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
//! A cell with the ability to mutate the value through an immutable reference when safe. //! //! # Comparison with `RefCell` //! //! `RefCell` goes for completely runtime checking, having `try_borrow`, `try_borrow_mut`, //! `borrow` and `borrow_mut` all taking `&self` and using custom reference types everywhere. //! //! `MuCell` (out of pity and the fact that “non-ascii idents are not fully supported” I did not //! name it `ΜCell` with the crate named `µcell`) makes much more use of true Rust borrow checking //! for a result that is more efficient and has no possibility of panicking. //! //! However, its purpose is not the same as `RefCell`; it is designed specifically for cases where //! something only *needs* an immutable reference, but where being able to safely take a mutable //! reference can improve efficiency. Say, for example, where it’s beneficial to be able to cache //! the result of a calculation, but you don’t really want to *need* to do that. //! //! The purpose of all of this is for an accessor for a `T` that can be made more efficient if it //! can have `&mut self`, but doesn’t strictly require it. For this reason, it’s often going to be //! paired with [`std::borrow::Cow`](http://doc.rust-lang.org/std/borrow/enum.Cow.html), e.g. //! `Cow<String, str>` (a.k.a. `std::str::CowString`) or `Cow<Vec<T>, [T]>` (a.k.a. //! `std::vec::CowVec`), producing `Borrowed` if you are able to mutate the value or `Owned` of the //! same data if not. //! //! # Examples //! //! This example covers most of the surface area of the library: //! //! ```rust //! # use mucell::MuCell; //! let mut cell = MuCell::new(vec![1, 2, 3]); //! //! // You can borrow from the cell mutably at no cost. //! cell.borrow_mut().push(4); //! //! // You can borrow immutably, too, and it’s very cheap. //! // (Rust’s standard borrow checking prevents you from doing //! // this while there’s a mutable reference taken out.) //! assert_eq!(&*cell.borrow(), &[1, 2, 3, 4]); //! //! // So long as there are no active borrows, //! // try_mutate can be used to mutate the value. //! assert!(cell.try_mutate(|x| x.push(5))); //! assert_eq!(&*cell.borrow(), &[1, 2, 3, 4, 5]); //! //! // But when there is an immutable borrow active, //! // try_mutate says no. //! let b = cell.borrow(); //! assert!(!cell.try_mutate(|_| unreachable!())); //! drop(b); //! //! // We can have many immutable borrows at a time, too. //! { //! let a = cell.borrow(); //! let b = cell.borrow(); //! let c = cell.borrow(); //! assert_eq!(&*a as *const _, &*b as *const _); //! } //! //! // Once they’re all cleared, try_mutate is happy again. //! assert!(cell.try_mutate(|x| x.push(6))); //! assert_eq!(&*cell.borrow(), &[1, 2, 3, 4, 5, 6]); //! ``` //! //! Look at the examples in the repository for some slightly more practical (though still //! typically contrived) examples. Also see the <a class="macro" href="macro.mucell_ref_type!.html" //! title="mucell::mucell_ref_type!">mucell_ref_type!</a> docs for an example of that part of the //! library. #![unstable = "almost stable, but not the macro parts"] #![no_std] #![feature(unsafe_destructor)] #![warn(bad_style, unused, missing_docs)] #![allow(unstable)] #[macro_use] extern crate core; extern crate rand; extern crate collections; #[cfg(test)] extern crate std; use core::cell::{Cell, UnsafeCell}; use core::default::Default; use core::fmt; use core::marker; use rand::{Rand, Rng}; use core::hash::{Hash, Hasher}; use core::prelude::{Option, Clone, Result, PartialEq, Eq, PartialOrd, Ord, FnOnce}; use core::cmp::Ordering; use core::ops::{Deref, Drop}; const MUTATING: usize = -1; /// A cell with the ability to mutate the value through an immutable reference when safe #[stable] pub struct MuCell<T> { value: UnsafeCell<T>, borrows: Cell<usize>, nocopy: marker::NoCopy, noshare: marker::NoSync, } #[stable] impl<T> MuCell<T> { /// Construct a new cell containing the given value #[inline] #[stable] pub fn new(value: T) -> MuCell<T> { MuCell { value: UnsafeCell::new(value), borrows: Cell::new(0), nocopy: marker::NoCopy, noshare: marker::NoSync, } } /// Borrow the contained object mutably. /// /// This is genuinely and completely free. #[inline] #[stable] pub fn borrow_mut(&mut self) -> &mut T { unsafe { &mut *self.value.get() } } /// Borrow the contained object immutably. /// /// Unlike `borrow_mut`, this isn’t *quite* free, but oh, so all but! It has a smattering of /// reference counting. No branches, though, so it’s as fast as is computationally possible. #[inline] #[stable] pub fn borrow(&self) -> Ref<T> { let borrows = self.borrows.get(); debug_assert!(borrows != MUTATING); self.borrows.set(borrows + 1); Ref { _parent: self } } /// Mutate the contained object if possible. /// /// If any immutable references produced by calling `borrow()` are active, /// this will return false, not executing the function given. /// /// If there are no immutable references active, /// this will execute the mutator function and return true. /// /// **Caution:** you should avoid touching `self` inside the mutator (not that it would really /// make much sense to be touching it, anyway); most notably, you MUST NOT call `borrow` on /// `self` inside the mutator, which includes things like the `==` implementation which borrow /// the value briefly; while calling `try_mutate` inside it will just return false, in debug /// builds calling `borrow` will panic and in release builds it will break memory safety as you /// will have both a mutable and an immutable reference to the same object at the same time /// (yep, it’s not quite preventing aliasing). So don’t do it. #[inline] #[stable] pub fn try_mutate<F: FnOnce(&mut T)>(&self, mutator: F) -> bool { if self.borrows.get() == 0 { self.borrows.set(MUTATING); mutator(unsafe { &mut *self.value.get() }); self.borrows.set(0); true } else { false } } } /// An immutable reference to a `MuCell`. Dereference to get at the object. #[stable] pub struct Ref<'a, T: 'a> { _parent: &'a MuCell<T>, } #[unsafe_destructor] #[unstable = "trait is not stable"] impl<'a, T: 'a> Drop for Ref<'a, T> { fn drop(&mut self) { self._parent.borrows.set(self._parent.borrows.get() - 1); } } #[unstable = "trait is not stable"] impl<'a, T: 'a> Deref for Ref<'a, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self._parent.value.get() } } } #[stable] impl<T: PartialEq> PartialEq for MuCell<T> { fn eq(&self, other: &MuCell<T>) -> bool { *self.borrow() == *other.borrow() } } #[stable] impl<T: Eq> Eq for MuCell<T> { } #[stable] impl<T: PartialOrd> PartialOrd for MuCell<T> { fn partial_cmp(&self, other: &MuCell<T>) -> Option<Ordering> { self.borrow().partial_cmp(&*other.borrow()) } } #[stable] impl<T: Ord> Ord for MuCell<T> { fn cmp(&self, other: &MuCell<T>) -> Ordering { self.borrow().cmp(&*other.borrow()) } } #[stable] impl<T: Default> Default for MuCell<T> { fn default() -> MuCell<T> { MuCell::new(Default::default()) } } #[stable] impl<T: Clone> Clone for MuCell<T> { fn clone(&self) -> MuCell<T> { MuCell::new(self.borrow().clone()) } } macro_rules! impl_fmt { ($($trait_name:ident)*) => {$( #[unstable = "trait is not stable"] impl<T: fmt::$trait_name> fmt::$trait_name for MuCell<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.borrow().fmt(f) } } )*} } impl_fmt!(Show Octal Binary LowerHex UpperHex Pointer LowerExp UpperExp); #[unstable = "trait is not stable"] impl<T: Rand> Rand for MuCell<T> { fn rand<R: Rng>(rng: &mut R) -> MuCell<T> { MuCell::new(Rand::rand(rng)) } } #[unstable = "trait is not stable"] impl<H, T> Hash<H> for MuCell<T> where H: Hasher, T: Hash<H> { fn hash(&self, state: &mut H) { self.borrow().hash(state) } } /// Create a new reference type to something inside the cell. /// /// Why is this necesary? Because of the tracking of immutable references (`Ref<'a, T>` rather than /// `&'a T`), anything from the object owning the original cell wishing to return a reference to /// something inside the cell must go producing another such reference type like `Ref`, with its /// own `Deref` implementation and so forth. (This is the cost of efficient memory safety!) /// /// Here’s an example of usage: /// /// ```rust /// #[macro_use] extern crate mucell; /// use mucell::{MuCell, Ref}; /// /// struct Foo { /// bar: String, /// } /// /// mucell_ref_type! { /// #[doc = "…"] /// struct BarRef<'a>(Foo), /// impl Deref -> str, /// data: &'a str = |x| x.bar.as_slice() /// } /// /// fn pull_string_out(foo: &MuCell<Foo>) -> BarRef { /// // Maybe pretend we did something like `try_mutate` here. /// /// // We would not be able to return foo.borrow().bar.as_slice() /// // here because the borrow() lifetime would be too short. /// // So we use our fancy new ref type! /// BarRef::from(foo) /// } /// /// fn say(s: &str) { /// println!("The string is “{}”", s); /// } /// /// fn demo(foo: &MuCell<Foo>) { /// say(&*pull_string_out(foo)); /// } /// /// fn main() { /// demo(&MuCell::new(Foo { bar: format!("panic") })); /// } /// ``` /// /// The `vector_munger` example demonstrates a more complex use case. #[macro_export] #[experimental] macro_rules! mucell_ref_type { ( $(#[$attr:meta])* // suggestions: doc, stability markers struct $ref_name:ident<'a>($ty:ty), impl Deref -> $deref:ty, data: $data_ty:ty = |$data_ident:ident| $data_expr:expr ) => { /// An immutable reference to a `MuCell`. Dereference to get at the object. $(#[$attr])* pub struct $ref_name<'a> { _parent: Ref<'a, $ty>, _data: $data_ty, } #[unstable = "still a little experimental, like the whole macro"] impl<'a> $ref_name<'a> { /// Construct a reference from the cell. #[unstable = "still a little experimental, like the whole macro"] fn from(cell: &'a MuCell<$ty>) -> $ref_name<'a> { let parent = cell.borrow(); // This transmutation is to fix the lifetime of the reference so it is 'a rather // than the block. Because we keep the parent around in the struct, it’ll be OK; // even if the parent destructor is run before any data destructor and it does // silly things with any references, because we’re not Sync it doesn’t matter if // `borrows` is decremented early. We could just use `transmute(&*parent)` here, // but for a macro it’s nice to avoid depending on std or core being in a // particular place is of value. (Caring about efficiency? Unoptimised, this way is // slightly less efficient, optimised both are noops.) let $data_ident: &'a $ty = unsafe { &*(&*parent as *const $ty) }; let data = $data_expr; $ref_name { _parent: parent, _data: data, } } } #[unstable = "trait is not stable"] impl<'a> ::std::ops::Deref for $ref_name<'a> { type Target = $deref; fn deref<'b>(&'b self) -> &'b $deref { &*self._data } } } } #[test] #[should_fail] fn test_borrow_in_try_mutate() { let a = MuCell::new(()); a.try_mutate(|_| { let _ = a.borrow(); }); } #[test] fn test_try_mutate_in_try_mutate() { let a = MuCell::new(()); assert!(a.try_mutate(|_| assert!(!a.try_mutate(|_| unreachable!())))); }